skip to main content


Search for: All records

Creators/Authors contains: "Martin, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Groundwater discharge to streams is a nonpoint source of nitrogen (N) that confounds N mitigation efforts and represents a significant portion of the annual N loading to watersheds. However, we lack an understanding of where and how much groundwater N enters streams and watersheds. Nitrogen concentrations at the end of groundwater flowpaths are the culmination of biogeochemical and physical processes from the contributing land area where groundwater recharges, within the aquifer system, and in the near-stream riparian area where groundwater discharges to streams. Our research objectives were to quantify the spatial distribution of N concentrations at groundwater discharges throughout a mixed land-use watershed and to evaluate how relationships among contributing and riparian land cover, modeled aquifer characteristics, and groundwater discharge biogeochemistry explain the spatial variation in groundwater discharge N concentrations. We accomplished this by integrating high-resolution thermal infrared surveys to locate groundwater discharge, biogeochemical sampling of groundwater, and a particle tracking model that links groundwater discharge locations to their contributing area land cover. Groundwater N loading from groundwater discharges within the watershed varied substantially between and within streambank groundwater discharge features. Groundwater nitrate concentrations were spatially heterogeneous ranging from below 0.03–11.45 mg-N/L, varying up to 20-fold within meters. When combined with the particle tracking model results and land cover metrics, we found that groundwater discharge nitrate concentrations were best predicted by a linear mixed-effect model that explained over 60% of the variation in nitrate concentrations, including aquifer chemistry (dissolved oxygen, Cl, SO42−), riparian area forested land cover, and modeled physical aquifer characteristics (discharge, Euclidean distance). Our work highlights the significant spatial variability in groundwater discharge nitrate concentrations within mixed land-use watersheds and the need to understand groundwater N processing across the many spatiotemporal scales within groundwater cycling.

     
    more » « less
    Free, publicly-accessible full text available November 23, 2024
  3. While project-based learning purportedly values student agency, supporting and managing this remains challenging. We conducted a design-based research study to understand how problem authenticity, and task and participant structures can contribute to students’ framing agency, in which students make decisions that are consequential to their learning through ill-structured problem framing. We compared three semesters of an undergraduate engineering design project (cohort 1 n=70; cohort 2 n=70; cohort 3 n=66). Discourse analysis of team talk highlights how task and participant structures supported students in the first and third cohorts to display framing agency. In contrast, cohort 2 displayed high agency over task completion, which they had framed as well-structured. We discuss implications for designing ill-structured learning in terms of participant and task structure and problem authenticity.

     
    more » « less
    Free, publicly-accessible full text available August 31, 2024
  4. Hox gene clusters encode transcription factors that drive regional specialization during animal development: e.g. the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings. 
    more » « less
    Free, publicly-accessible full text available October 12, 2024
  5. ABSTRACT

    We introduce MF-Box, an extended version of MFEmulator, designed as a fast surrogate for power spectra, trained using N-body simulation suites from various box sizes and particle loads. To demonstrate MF-Box’s effectiveness, we design simulation suites that include low-fidelity (LF) suites (L1 and L2) at 256 and $100 \, \rm {Mpc\, ~}h^{-1}$, each with 1283 particles, and a high-fidelity (HF) suite with 5123 particles at $256 \, \rm {Mpc\, ~}h^{-1}$, representing a higher particle load compared to the LF suites. MF-Box acts as a probabilistic resolution correction function, learning most of the cosmological dependencies from L1 and L2 simulations and rectifying resolution differences with just three HF simulations using a Gaussian process. MF-Box successfully emulates power spectra from our HF testing set with a relative error of $\lt 3~{{\ \rm per\ cent}}$ up to $k \simeq 7 \, h\rm {Mpc}{^{-1}}$ at z ∈ [0, 3], while maintaining a cost similar to our previous multifidelity approach, which was accurate only up to z = 1. The addition of an extra LF node in a smaller box significantly improves emulation accuracy for MF-Box at $k \gt 2 \, h\rm {Mpc}{^{-1}}$, increasing it by a factor of 10. We conduct an error analysis of MF-Box based on computational budget, providing guidance for optimizing budget allocation per fidelity node. Our proposed MF-Box enables future surveys to efficiently combine simulation suites of varying quality, effectively expanding the range of emulation capabilities while ensuring cost efficiency.

     
    more » « less
  6. Abstract

    Riverbank groundwater discharge faces are spatially extensive areas of preferential seepage that are exposed to air at low river flow. Some conceptual hydrologic models indicate discharge faces represent the spatial convergence of highly variable age and length groundwater flowpaths, while others indicate greater consistency in source groundwater characteristics. Our detailed field investigation of preferential discharge points nested across mainstem riverbank discharge faces was accomplished by: (1) leveraging new temperature‐based recursive estimation (extended Kalman Filter) modelling methodology to evaluate seasonal, diurnal, and event‐driven groundwater flux patterns, (2) developing a multi‐parameter toolkit based on readily measured attributes to classify the general source groundwater flowpath depth and flowpath length scale, and, (3) assessing whether preferential flow points across discharge faces tend to represent common or convergent groundwater sources. Five major groundwater discharge faces were mapped along the Farmington River, CT, United States using thermal infrared imagery. We then installed vertical temperature profilers directly into 39 preferential discharge points for 4.5 months to track vertical discharge flux patterns. Monthly water chemistry was also collected at the discharge points along with one spatial synoptic of stable isotopes of water and dissolved radon gas. We found pervasive evidence of shallow groundwater sources at the upstream discharge faces along a wide valley section with deep bedrock, as primarily evidenced by pronounced diurnal discharge flux patterns. Discharge flux seasonal trends and bank storage transitions during large river flow events provided further indication of shallow, local sources. In contrast, downstream discharge faces associated with near surface cross cutting bedrock exhibited deep and regional source flowpath characteristics such as more stable discharge patterns and temperatures. However, many neighbouring points across discharge faces had similar discharge flux patterns that differed in chloride and radon concentrations, indicating the additional effects of localized flowpath heterogeneity overprinting on larger scale flowpath characteristics.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024